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Analysis of spatiotemporal signals: A method based on perturbation theory

A. Hutt'* C. Uhl! and R. Friedrich
IMax-Planck-Institute of Cognitive Neuroscience, Stephanstrasse 1a, 04103 Leipzig, Germany
2Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
(Received 18 December 1998

We present a method of analyzing spatiotemporal signals with respect to its underlying dynamics. The
algorithm aims at the determination of spatial modes and a criterion for the number of interacting modes.
Simultaneously, a way of filtering of nonorthogonal noise is shown. The method is discussed by examples of
simulated stable fixpoints and the Lorenz attraciBi063-651X99)01908-X]

PACS numbdps): 05.45—a, 02.50.Sk

[. INTRODUCTION The perturbational approach is based on a ground state of
the PCA modes, which represents the exact solution of mini-
In various scientific fields the analysis of spatiotemporalmizing a cost function leading to a complete orthogonal ba-
patterns emerging from complex systems plays an importarﬁis. We introduce a perturbation by an additional term in the
role. An investigation of measured multidimensional data al-cost function for a determination of signal dynamics. Using a
lows us to learn more about the internal dynamics of themathematical methodology similar to Hartree and Fock
system. It represents the basis for microscopic modeling dfl1,12, we obtain dynamically coupled spatial modes. A
interactions in investigated systerfesg.,[1]). Some typical ~criterion for the estimation of the number of interacting
fields of application are chemical reactidr®d, meteorology ~modes can be derived. We obtain the relevant signal sub-
(e.g.,[3]) and hydrodynamic$4] or biological systems as Space independent of an orthogonality relation between sig-
analyzing electroencephalographf§EEG) or magnetoen- hal _and noise, due to our special choice of a biorthogonal
cephalographyMEG) data[5-7]. basis.
Depending on the intended use, different kinds of data
processing techniques can be applied. An often used method II. METHOD
for linear data analysis is known as principal component
analysis(PCA) [8] or Karhunen-Loge expansion. Spatial
modes are calculated based on maximizing signal projections A N-dimensional spatiotemporal signal can be described
on these modes. It leads to orthogonal spatial and temporaély a vectorq(t) of dimensionN. In order to determine sig-
modes and gives a measure for the contribution of eachificant parts of the signal, one can decompose the signal
mode to the signal. Modes with a signal contribution above anto spatial and temporal modes and x;(t) by PCA. The
certain threshold are considered as relevant, those below thgoperties are determined by a cost function
threshold as irrelevant. However, this method fails to sepa-
rate signal from noise, if signal and noise are not orthogonal v % {[aq(t)—(g-v) Vi1 %

A. Principal component analysis(PCA)

on each other, and if noise parts contribute more than parts ~ () e 7y (Vi Vi = &),

of the relevant signal to the data. Furthermore an estimation g ’

of the number of interacting modes depends on the choice of

the threshold. Underlying dynamic structures are neglected ﬂzo 21
o : : (2.7)

by this linear data technique. IV

A nonlinear approach aiming at extracting interacting
modes and the underlying dynamics has been presented, e.ghere(---) denotes time average ang are Lagrange mul-
in [9,10]. However, the numerical effort of these nonlinear tipliers to fulfill the orthogonality constraint.
approaches is considerably high, especially with an increas- Standard cost functions of PCA lead to degenerated solu-
ing dimensionality of the underlying dynamical system. Antion spaces. To obtain the known equations of PCA directly,
estimation of the number of interacting modes is also still arhere one sums up the single errors to the signal and fixes the
open question. amplitudes as projections on the modes. This breaks the in-
In this paper we will present a nonlinear technique basedariance with respect to linear transformation.
on (linean perturbation theory, which focuses on internal It leads to an eigenvalue problem
deterministic dynamic patterns and extracts signal dynamics
from noisy data sets. It improves PCA suspending the con- CVie= NV, (2.2
dition of orthogonality and allows an objective estimation of
interacting spatial modes. Due to the linear equations to bavith C={q(t) ® q(t))/(g?), orthogonal spatial modeg and
solved, the method leads to a fast and robust algorithm.  amplitudesx,(t)=q(t)- vy, where ® denotes the dyadic
product. They obey Eq$2.3),

*Electronic address: hutt@cns.mpg.de Vi Vi= 8, (X(D)X (1)) = NS - (2.3
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Since V=N-2,\;, the modes are sorted with respect to oV
their contribution to the signal given by the eigenvalies Jay =0, 29
N> Np> - >\ (2.9 Py, oV
—=0, —=0. (2.10
By choosing a thresholdl, and considering modeg with 9Tk day

N>\ btai b f the signal
i~ /e ONE ObtaINS & subspace ot the signa Inserting Eq.(2.7) into Egs.(2.8) and(2.10, we get

M<N
M
q(t)_ I:El Xi(t)Vi . (25) _2CWk+ ZCW;‘FEO’)_\/?_'FE TkjWJ'ZO, (21],)
aw, =1
The following problems arise by such an approaghiThe
choice of\. and, therefore, an estimation of the number of
interacting modes is an open questi@n. Noisy parts of the
signal can be represented by modeswvith ;>\, and/or M

aV
— 20w} +2(W CW} Wi+ € —
W

dynamically relevant modeg can be neglected because of ¥
. X + W+ = .
\;<\. (iii) If signal and noise are not orthogonal, the sepa- .Zl Wi+ 200w =0, (212
ration of signal from noise cannot be achieved by an or-
thogonal expansion. Wy W=y, (2.13
B. Perturbational approach Wi= 1. (2.19

To improve PCA with respect to these points, a bior-

thogonal baséw;"},{w;} with Because of the nonlinear dependenced¥f;/dw, and

Vg4l dwy, Egs.(2.11) and (2.12 cannot be solved directly.
Wi+~Wj=5ij, wi-w=1 (2.6) Therefore, a perturbational_approach is chosen: the modes
are expanded by power seriesdn

is introduced. Amplitudeg,(t) are now obtained by the sig-

@ @
nal projectionx;(t)=qw;" . W =vitew T +etw T+, (2.19
A second extension is done by introducing an additional ) ,
term Vy(w;" ,W;,a;,) in the cost function considering the wi=vi+ewf - ezwi( 4. (2.19

dynamics of the signal. Since nonlinear interactions are as-
sumed V4 will depend nonlinearly onv;" . In this paragraph ~as well as the Lagrangian parameters
the actual definition is irrelevant; it is sufficient to introduce

. . _ 0 1 2
parameters;, as parameters of the dynamic fit. The exact Ty=Ttent T, (2.17)
specification of the cost functioviy will be given in the next
section. aj=al+ eal + 2al+ - - . (2.18

We can interpre/y as a perturbation of the groundstate _ .
built by PCA modes. Considering also the constrait§)  The eigenvalues; are not expanded; the amplitudegt)

we define the cost functiod as remain the projections of the signal on the expanded modes
y w;". The expansion coefficients;” ™ and w" are built by
[a(t)— (- w;")w;]? superposition of the PCA modes,
Ve ([a q2 W >+6Vd(Wi+ WA perp LS
i=1 (a%) N N

M

M Wf(”)zjzl chv;, Wf”)zjzl div;. (2.19
+”2:1 rn<wr-wj—5i,»>+i§1 al(w)2-1]. (2.7

Finally, the terms of Eqgs(2.11) and (2.12 can be sorted

The parametek is a measure for perturbation of the PCA With respect to powers of and evaluated separately.
state, andr;; and «; are Lagrangian parameters of the intro-
duced constraints.

The minimum of the cost functioW represents the dy- First we investigate the solution in perturbation order
namically relevant subspace spanned by the biorthogonal ba=0. With Egs.(2.195 and(2.16 it follows that
sis {w},{w;} of dimension M<N in the given

1. Ground state

N-dimensional vector space. A, W;, @, 7q, anday 74=0, ag=0. (2.20
are independent of each other, the minimum is obtained bg )
vanishing partial derivatives of: quation(2.12 leads to

CVi= AV, (2.21)

Vv v

+=0, ——-=0, (2.9
IWk k (X (DX (1) =N i, (2.22
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with x,(t) representing amplitudes of PCA. As constructed, C. Specification ofV 4

the ground state corresponds to the PCA solution. So far we have not specified the cost functignconsid-

) ) ering dynamic interactions. Our choice relies on the PCA
2. First-order perturbation approach for the time derivative of the signal,
In the first-order perturbation, we have to deal with non-
quadratic coefficient tensorkcy,} and {d;,} with 1<k ((q—xw;)?)
<M, 1<m=N. .21 @
First we investigate the casesk<M and I=sm<M and
obtain from evaluating Eq2.6):

(2.30

Because of the assumed interactions, the time derivative of

al = _Cﬁwk dlk: c&k=0. (2.23 the amplitudes;(t) can be described as a function>xqf,
Equations(2.11) and(2.12 lead to Lagrangian parameters, xi=fi[x;]. (2.3
Vg Vg Vg Inserting this expression into E(R.30, we obtain our defi-
ap=——| Vet —| Vi, Ta=-— Vi, nition of the cost functionV/:
Wil Wy N
0
2 ((g—fiw, ((@—fw)%) (2.32
0 =1 <q )
. A IVq
Tkm™— 0—( mk~ Akm) — T Vm vV k#m ) o ) )
(Ap—\p) IWy . The time derivative ofg(t) is calculated numerically and
(2.25  remains regular in the case of weak noise. Strong noise can
lead to irregular numerical values, which need to be investi-
and coefficients gated separately.
As an ansatz for the functiof[x;] we choose a polyno-
mial function,
ct . 1(>\°+>\°)A —\0A Vk#m .
km ()\(k)_}\gn)z 2 k m/=km k= mk M ) M i
(2.26 fi[xj]=j§l rijx,—+;1 kz 21X
with L
+E E E Fijk|XijX|, (233
j=1k=11=1
A IVy IVy -
K ow TGy Vm (227 since most of the generic cases can be modeled by such a set
0

of differential equations. To abbreviate the notation, we can

define a vectof&,} consisting of the powers of; ,

The termsé!Vd/awrm0 and dVq/owp| | represent partial de-

rivatives withw, =w,=v,. {£,)
In the case of £k=M andM <m=N, we get

={X0, X201 « v XM XT X1X s « e e X XXX, . XY
1 Vg Vyq (2.34
Chn=— = (Ao vyt AD—2| v
km 2)\o()\o_ ) m&Wk m k + mj|» .
m ke fm 0 k (2.28 and summarize Eq2.33 to
d 1 (an &Vd (2 29 fi[xj]: E aia‘fa . (233
= | —| -Vt , (@ @
KM 2(N0—\0) | aw . ™ oowr| "

The derivativesiVy/dw,| S and an/anl(J occurring in

and the Lagrangian parameters vanish. the expressions of coefficier‘nlém can now be evaluated to
In this paper we are dealing with low-dimensional dynam-

ics; however, icr)1 th% case of high-dimensional dynamics, the Ny

denominator X, —\p,) may b(_acome smqll for high numbers | == E 2 akBMaBVk <§aQ> aka,

k,I and, therefore, perturbation theory in degenerated states Wk (q ) @

should be applied. (2.36
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FIG. 1. Trajectory near a stable fixpoint in they plane. FIG. 2. Calculated cost functioviy(M = 2,€) for the signal near

a stable fixpoint. The plot shows a minimum with a combination of

oV . ago the first two PCA modessolid line) at e,,;,=0.084. The dotted line

d 0 +0 0 B o

T :_2 E 2 E a;,&,—q-vj|a B 1 corresponds to the combination of PCA modes 1 and 3; the dashed
IWy o (o) i= Wi line corresponds to the combination of PCA modes 2 and 3.

(2.37)
of spatial modesin first-order perturbation theorgpanning
Thereby, the polynomial coefficients), are obtained from the dynamically relevant subspace and the number of inter-
Eqg. (2.9 as acting modes is obtained.

I1l. APPLICATIONS TO SIMULATED DATA SETS
ap,= 2, bgM 5o (2.39 _ _ . _
B To illustrate our approach we will present in the following
the analysis of three simulated data sets consisting of two-
mode interactions with one- and three-dimensional noise or-
_ 0 _ /40,0 thogonal to the signal, and a chaotic three-mode interaction,
big=((a-vi)ég),  Map=(£ati), (239 witr? additive noisg nonorthogonal to the signal.

with

and the derivatives Qf?, are given as
A. Noisy signal near a stable fixed point

% First we assume a three-dimensional spatiotemporal sig-
5'3 Xe: W, =A%, nal near a two-dimensional stable fixed point and additive
orthogonal noise,
0
B

9

B=xXs, 1=8—2 = (Xt Besxe), (240 10 0 0
Wy at)=xt)| 0 |+yt)| 1| +nzt){ O|. (3.2
szXrXSXt, 0 0 !
0 The amplitudex(t) andy(t) thereby obey the following set
d&g of differential equations:
rsssti—_-= A SkrXsXt T OkXeXe + SiXXs) -
awy, ey

D. Dynamically relevant subspace -
Y Y P y=ax+by+cx?y, 3.2
Assuming aVi-mode interaction, the modeg  ,w; given

by Egs.(2.15), (2.16, and(2.19 are calculated in first-order where a=0.06, b=—0.1, ¢c=0.01, x(tg)=0.3, andy(t)
correction out oM PCA modes. In thé&-dimensional signal =0.7. The noise amplitude(t) is modeled by

space, there aréj'(} possible combinations to choob out

of N PCA modes as the ground state. Therefore, we obtain 5

(\) alternatives improving the corresponding PCA modes. Z(t):j\[;l P0G, o7 1). 83
Since the cost functiolvy measures dynamics representa-

tion, the best estimation of the relevant subspace is spannegere p; e[ —0.5;0.5 and »<[0;T] denote random num-

by modesw, ,w, with minimal value ofV4(w, ,w,,e,M), bers, T denotes the number of time steps, &, ,oiz,t)

i.e., by investigation oEﬁzl(,’)',,) branches, the best choice represent temporal Gaussian functions with random means
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FIG. 3. Projected trajectories
4 . . 4 , , in the plane spanned by new
-20 -10 0 10 -20 -10 0 10 modesw; ,w; . The perturbation
parameter e is varied from e
6 (© 6 () =0.000(a) over e=0.052(b) and
' ' ' ' €=0.084(c) to €=0.100(d). We
4l i 4l | recognize the best projection in
(c), as predicted by Fig. 2.
2t . 2t —
>
0r b 0r b
2t 4 2t J
-4 1 1 -4 1 1
=20 -10 0 10 -20 -10 0 10
X X

m; and random variancesiz. The factor\is introduced to illustrated in Fig. 3: the projectiong(t)=w; -q(t) and
scalez(t) to (z2(t))=1, n in Eq. (3.1) allows tuning the Y(t)=w; -q(t) are presented in the-y phase space for dif-

signal-to-noise ratio. ferent values ok. In agreement with our expectations from
Figure 1 shows the signal ir—y plane: the trajectory Fig. 2, the best fit compared to Fig. 1 is obtained tor
cycles into a stable fixed point. = €min,» With a dramatic improvement compared to the PCA

We investigate the three-dimensionaN#£3) data solution (e=0).

set consideringM = 2 interacting modes. Thus, we deal with  The influence of the noisy part of the signal is
(3) branches of ground states: PCA modes 1 and 2, moddsvestigated by varying the scalinq of the noise

1 and 3, and modes 2 and 3. The corresponding values @mplitude. Figure 4 presents the results by plots of
the cost functiorV are plotted in dependence efin Fig. 2. Va(M=2,€). Increasing signal-noise rati®/n, defined
The branch of PCA modes 1 and 2 represents the be$ty s/n=\/<q52igna|>/<q2noise>, decreases the quality of the
dynamic fit; they capture most of the dynamics. Fromfit by increasing values oly and increasese,,, i.e.,
the figure we expect the best improvement of the PCAfor higher noise levels the influence of our additional
modes for a perturbation value ef,;,=0.084. This effect cost functionVy becomes more important, which is reflected
of the perturbation by the nonlinear cost functidfy is by increasing values ok,,,. For high noise levels the

0.725 T T T T

0.675 )

0.625 FIG. 4. Cost functiorVy(e) for different val-

ues of the signal-to-noise ratisn .

cost function V,

0.575

0.525 ; L L
0 0.05 0.1 0.15 0.2

perturbation parameter
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v FIG. 5. Amplitudes of the Lo-
y(t) -~ " - WY - renz attractor without noisda)
and with nonorthogonal noise
where a channel with pure noise is
“ M A “ added in an additional dimension
WY |

) AMWWM

0 200 400 600 800 1000 0 200 400 600 800 1000
time steps time steps

first-order perturbation may not be sufficient to capture mosthe chaotic signal is modeled by the Lorenz equations,
of the dynamics, higher-order perturbation terms may be
considered. \

x=—o(x—y)+a(l), (3.5
B. Noisy Lorenz attractor y= rXx—y—xz+a(t),
The second example deals with a four-dimensional signal
q(t), consisting of a three-mode chaotic signal z=—bx+xy+a(t),
[x(1),y(1),z(t)] and additive nonorthogonal noise,
with 0=10, r=2.8, b=8/3, x(ty)=0.1, y(t;)=0.2, and
1 0 0 1
Z(to):O?)
1 1 The noise amplitudé'(t) is modeled by
at=x(t)| o | Ty o [+z0| [0},
7
0 0 0 1 FO=N2 pi()Gi(pi, 01, (3.6
0.82 . .
0.81 | .

0.8
<° FIG. 6. Dynamic cost function for the Lorenz
5 signal with respect to the perturbation parameter
B 079 | € with number of interacting modeldl =3. The
2 deepest minimum is observed at+0.2 with a
§ combination of PCA modes 1, 2, and(dotted

line). The solid line corresponds to the combina-
tion of PCA modes 1, 2, and 3.

0.78

0.77
1-2-4

....

0.76 ' .
0 0.1 0.2 0.3

perturbation parameter
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(b)

FIG. 7. Amplitudesq-w;" ob-
tained by the PCA fi{a) and our
perturbational approacti).

400 600 800 200
time steps

0 200 1000 O

with the same abbreviations as in the example abavde-
notes correlated low noise. In Fig(eh the amplitudes of the
“pure” three-mode interaction without noisg(t), y(t), and
z(t), are presented. Fig.(» shows the four-dimensional
spatiotemporal signai(t), as given by Eq(3.4).

400

600 800

time steps

1000

A comparison of both results to the deterministic signal
is shown in Fig. 8. Here we transformed the original deter-
ministic signal park=(x,y,z)',I'(t)=0 by a transformation
matrix L to neglect any scaling effects due to different ori-
entations or scales of the compared signals.

We investigate the simulated signal by assuming a three- L is determined by

mode interaction. Therefore, we deal wit§1) (PCA ground

states and corresponding branchgs Figure 6 shows two i<[y(t)f|_x(t)]2>:0 (3.7)
branchegcorrections based on PCA modes 1, 2, and 3, as Il

well as based on modes 1, 2, and the other two omitted

branches are considerably higher. One observes that correc- _)Lklzg <Yka><XjX|>_1- (3.9

tions of thel—2—4 PCAground state lead to better dynamics
representation as the 1-2-3 combination, i.e., in the third ) ,
PCA mode there is a higher contribution of the noisy part' '€ improvement obtained by our algorithm compared to the
than of the deterministic part, whereas in the fourth PCAPCA approach can be clearly observed in Fig. 8.
mode the deterministic part overbalances the noisy contribu-
tion. This behavior is corrected by our approach, in such a
way that the separation of the deterministic—even though We simulate a five-dimensional signal q(t)
chaotic—part from the noisy part is improved. =(x(t),y(t),['1(t),T'5(t),T'5(t))" based on the two-mode
Figure 7 presents the PCA amplitudes in comparison tanteraction given by Eg(3.2) and orthogonal noise given by
the amplitudes obtained by our algorithmeat €y, - normalized amplitudes,

C. Estimation of the number of interacting modes

0.04 . ®) . 0.04 ®)
0.02 41 o002
FIG. 8. A direct comparison of
deterministic(dotted ling and re-
° 0 0 constructed signalgsolid line).
E The best PCA fit is shown ifa),
g8 the best perturbation fit in(b),
® _0.02} 4 -0.02 where a better match can be rec-
ognized. We cut off parts of the
time window to improve the com-
-0.04 | { -0.04 parison.
-0.06 ' ' -0.06 ‘ ‘
400 600 800 400 600 800
time steps time steps
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0.9 . @ . 0.73 . (b)
\ 1-4
> o8l . 0.725
5 N FIG. 9. Dynamic cost func-
g . il 072 tions V4(M,€) calculated for the
b ’ ’ noisy signal near a stable fixpoint.
8 Only combinationsm-n of PCA
06 F 1-2 4 0.715 - modes yielding the deepest mini-
123 mum of V4 are shown for various
05 ) ‘ ) 071 ) ‘ ) numbers of interacting modeM
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 =2 in (@, M=3 in (b), and M
=4 in (c). In (d), a comparison of
0.779 the best fits of allM interacting
0778 modes is presented. We recognize
) an obvious best fit aM=2. The
> cases whereM=1 and M=5
= 0777 . .
S were not plotted with different
g 0.776 PCA ground states because of
b their visible irrelevance to the re-
8 4775 sult in (d).
0.774 ' ‘ ' 0.5 ' ‘ '
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
perturbation parameter ¢ perturbation parameter &

n Finally, we investigate the noisy Lorenz attraci{@:4).
Tj(t)ZNz Gi(ui,o 1), (3.9 Dynamic fits are shown in Fig. 10 with varying number of
=1 interacting modes and PCA ground states. The investigation
of two coupling modes leads to the 1-2 branch with minimal
again with Gauss functiors;(; ,%,t) with random means Vvalues; for three interacting modes the method neglects one
w; and constant variances’. noisy mode by combinations of the 1-2-4 PCA modes. A
The applied dynamic fits are shown in Fig. 9 varying thecomparison of the best fits with =2 andM =3 shows an
assumed number of interacting modes and the different coninteresting feature: though the Lorenz signal is determined
binations of PCA modes as ground states. In the cadd of by a three-dimensional set of differential equations our
=2 interacting mode$§Fig. 9a)] we recognize the deepest method detects a two-mode interaction: there is a deeper
minimum with a combination of the first and second PCAminimum for M =2. This is due to the similarity of the two
mode. Dynamic fits with three and four interacting modesamplitudesx(t) andy(t) [compare Fig. &)] and the result-
[Figs. 9b) and 9c)] show minima as well, but with higher ing correlation dimensiomnl-=2.06 of the Lorenz attractor
values ofV4. A comparison of the best fif$tig. 9(d)] pre- [13]. The small differences between these two amplitudes
sents the differences with respect to the number of interacitannot be resolved by our method in the presence of noise.
ing modes: the two-mode interaction is clearly detected. However, the detection of two interacting modes and the

0.95
0.90
>'U
c
S
Q 0.85
2
g
g 080 8
0.80
075 12 7
0.70 . : : 0.75 : : : 0.73 : . .
0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3
perturbation parameter & perturbation parameter & perturbation parameter €

FIG. 10. Dynamic cost functiongy(M,e) calculated for the noisy Lorenz attractor, at various PCA ground statesWe recognize a
best fit with the first two PCA modes as ground si@@id line) at M=2 (a) and a best fit with a PCA ground state built by modes 1, 2, and
4 (dotted ling at M =3, seen in(b). A comparison of the fits a =2 andM =3 is presented iric); a deeper minimum is found &f
=2 (solid ling), but the difference to the minimum & =3 (dotted ling is quite small. PCA ground states dt=1 andM =4 are found
at much higher values of 4 and are thus left out.
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good correspondence to the exact solutioompare Fig. 8  tion is achieved even in the case of nonorthogonal signal and
is a considerable improvement compared to PCA apnoise, and in the case of noise levels with larger contribu-
proaches. tions than signal contributions to the data. Finally, the num-
ber of interacting modes can be estimated by the presented
algorithm.
IV. CONCLUSIONS The method is illustrated by examples of its application to
simulated data sets: In the case of a noisy trajectory near a

We introduced a concept in nonlinear signal analysis foigiapie fixed point the dimensionality of the dynamics sub-

analyzing spatiotemporal signals. It considers signal dynamspace is correctly estimated and a dramatic improvement
ics beside a maximum signal representation. The idea mainlyompared to PCA is achieved. For a noisy three-dimensional
consists of an additional signal dynamics fit to a pure signathaotic signal embedded in a four-dimensional phase space
fit, interpreted as a perturbation of a PCA ground state. Inthe dimensionality is underestimated due to the fractal geom-
troducing a biorthogonal basis, first-order perturbation leadgtry of the attractor. However, the dominant structure of the
to expansion coefficients of modes and polynoms of differ-attractor is reconstructed and noisy parts are separated.
ential equations. The algorithm may represent a helpful tool for analyzing
This approach improves PCA, since signal-noise separaspatiotemporal signals in different fields of research.
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