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Analysis of spatiotemporal signals: A method based on perturbation theory

A. Hutt,1,* C. Uhl,1 and R. Friedrich2
1Max-Planck-Institute of Cognitive Neuroscience, Stephanstrasse 1a, 04103 Leipzig, Germany

2Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
~Received 18 December 1998!

We present a method of analyzing spatiotemporal signals with respect to its underlying dynamics. The
algorithm aims at the determination of spatial modes and a criterion for the number of interacting modes.
Simultaneously, a way of filtering of nonorthogonal noise is shown. The method is discussed by examples of
simulated stable fixpoints and the Lorenz attractor.@S1063-651X~99!01908-X#

PACS number~s!: 05.45.2a, 02.50.Sk
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I. INTRODUCTION

In various scientific fields the analysis of spatiotempo
patterns emerging from complex systems plays an impor
role. An investigation of measured multidimensional data
lows us to learn more about the internal dynamics of
system. It represents the basis for microscopic modeling
interactions in investigated systems~e.g.,@1#!. Some typical
fields of application are chemical reactions@2#, meteorology
~e.g., @3#! and hydrodynamics@4# or biological systems as
analyzing electroencephalography~EEG! or magnetoen-
cephalography~MEG! data@5–7#.

Depending on the intended use, different kinds of d
processing techniques can be applied. An often used me
for linear data analysis is known as principal compon
analysis~PCA! @8# or Karhunen-Loe`ve expansion. Spatia
modes are calculated based on maximizing signal project
on these modes. It leads to orthogonal spatial and temp
modes and gives a measure for the contribution of e
mode to the signal. Modes with a signal contribution abov
certain threshold are considered as relevant, those below
threshold as irrelevant. However, this method fails to se
rate signal from noise, if signal and noise are not orthogo
on each other, and if noise parts contribute more than p
of the relevant signal to the data. Furthermore an estima
of the number of interacting modes depends on the choic
the threshold. Underlying dynamic structures are neglec
by this linear data technique.

A nonlinear approach aiming at extracting interacti
modes and the underlying dynamics has been presented,
in @9,10#. However, the numerical effort of these nonline
approaches is considerably high, especially with an incre
ing dimensionality of the underlying dynamical system. A
estimation of the number of interacting modes is also still
open question.

In this paper we will present a nonlinear technique ba
on ~linear! perturbation theory, which focuses on intern
deterministic dynamic patterns and extracts signal dynam
from noisy data sets. It improves PCA suspending the c
dition of orthogonality and allows an objective estimation
interacting spatial modes. Due to the linear equations to
solved, the method leads to a fast and robust algorithm.

*Electronic address: hutt@cns.mpg.de
PRE 601063-651X/99/60~2!/1350~9!/$15.00
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The perturbational approach is based on a ground sta
the PCA modes, which represents the exact solution of m
mizing a cost function leading to a complete orthogonal
sis. We introduce a perturbation by an additional term in
cost function for a determination of signal dynamics. Usin
mathematical methodology similar to Hartree and Fo
@11,12#, we obtain dynamically coupled spatial modes.
criterion for the estimation of the number of interactin
modes can be derived. We obtain the relevant signal s
space independent of an orthogonality relation between
nal and noise, due to our special choice of a biorthogo
basis.

II. METHOD

A. Principal component analysis„PCA…

A N-dimensional spatiotemporal signal can be describ
by a vectorq(t) of dimensionN. In order to determine sig-
nificant parts of the signal, one can decompose the sig
into spatial and temporal modesvi and xi(t) by PCA. The
properties are determined by a cost function

V5(
i 51

N
^@q~ t !2~q–vi !vi #

2&

^q2&
1 (

i , j 51

N

t i j ~vi•vj2d i j !,

]V

]vk
50, ~2.1!

where^¯& denotes time average andt i j are Lagrange mul-
tipliers to fulfill the orthogonality constraint.

Standard cost functions of PCA lead to degenerated s
tion spaces. To obtain the known equations of PCA direc
here one sums up the single errors to the signal and fixes
amplitudes as projections on the modes. This breaks the
variance with respect to linear transformation.

It leads to an eigenvalue problem

Cvk5lkvk , ~2.2!

with C5^q(t) ^ q(t)&/^q2&, orthogonal spatial modesvk and
amplitudesxk(t)5q(t)•vk , where ^ denotes the dyadic
product. They obey Eqs.~2.3!,

vk•vl5dkl , ^xk~ t !xl~ t !&5lkdkl . ~2.3!
1350 © 1999 The American Physical Society
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Since V5N2( il i , the modes are sorted with respect
their contribution to the signal given by the eigenvaluesl i :

l1.l2.•••.lN . ~2.4!

By choosing a thresholdlc and considering modesvi with
l i.lc one obtains a subspace of the signal

q~ t !. (
i 51

M,N

xi~ t !vi . ~2.5!

The following problems arise by such an approach:~i! The
choice oflc and, therefore, an estimation of the number
interacting modes is an open question.~ii ! Noisy parts of the
signal can be represented by modesvi with l i.lc and/or
dynamically relevant modesvj can be neglected because
l j,lc . ~iii ! If signal and noise are not orthogonal, the sep
ration of signal from noise cannot be achieved by an
thogonal expansion.

B. Perturbational approach

To improve PCA with respect to these points, a bio
thogonal base$wi

1%,$wi% with

wi
1
•wj5d i j , wi•wi51 ~2.6!

is introduced. Amplitudesxk(t) are now obtained by the sig
nal projectionxi(t)5qwi

1 .
A second extension is done by introducing an additio

term Vd(wi
1 ,wj ,aia) in the cost function considering th

dynamics of the signal. Since nonlinear interactions are
sumed,Vd will depend nonlinearly onwi

1 . In this paragraph
the actual definition is irrelevant; it is sufficient to introdu
parametersaia as parameters of the dynamic fit. The exa
specification of the cost functionVd will be given in the next
section.

We can interpretVd as a perturbation of the groundsta
built by PCA modes. Considering also the constraints~2.6!
we define the cost functionV as

V5(
i 51

M
^@q~ t !2~q•wi

1!wi #
2&

^q2&
1eVd~wi

1 ,wj ,aia!

1 (
i , j 51

M

t i j ~wi
1
•wj2d i j !1(

i 51

M

a i@~wi !
221#. ~2.7!

The parametere is a measure for perturbation of the PC
state, andt i j anda i are Lagrangian parameters of the intr
duced constraints.

The minimum of the cost functionV represents the dy
namically relevant subspace spanned by the biorthogona
sis $wi

1%,$wi% of dimension M<N in the given
N-dimensional vector space. Aswi

1, wj , aia, tkl , andak

are independent of each other, the minimum is obtained
vanishing partial derivatives ofV:

]V

]wk
1

50,
]V

]wk
50, ~2.8!
f

-
-

-

l

s-

t

a-

y

]V

]aka
50, ~2.9!

]V

]tkl
50,

]V

]ak
50. ~2.10!

Inserting Eq.~2.7! into Eqs.~2.8! and ~2.10!, we get

22Cwk12Cwk
11e

]Vd

]wk
1

1(
j 51

M

tk jwj50, ~2.11!

22Cwk
112~wk

1Cwk
1!wk1e

]Vd

]wk

1(
i 51

M

t ikwi
112akwk50, ~2.12!

wk
1
•wl5dkl , ~2.13!

wk
251. ~2.14!

Because of the nonlinear dependence of]Vd /]wk
1 and

]Vd/]wk , Eqs.~2.11! and ~2.12! cannot be solved directly
Therefore, a perturbational approach is chosen: the mo
are expanded by power series ine,

wi
15vi1ewi

1(1)
1e2wi

1(2)
1•••, ~2.15!

wi5vi1ewi
(1)

1e2wi
(2)

1•••, ~2.16!

as well as the Lagrangian parameters

t i j 5t i j
0 1et i j

1 1e2t i j
2 1•••, ~2.17!

a i5a i
01ea i

11e2a i
21•••. ~2.18!

The eigenvaluesl i are not expanded; the amplitudesxi(t)
remain the projections of the signal on the expanded mo

wi
1 . The expansion coefficientswi

1(n)
and wi

(n)
are built by

superposition of the PCA modesvi ,

wi
1(n)5(

j 51

N

ci j
n vj , wi

(n)5(
j 51

N

di j
n vj . ~2.19!

Finally, the terms of Eqs.~2.11! and ~2.12! can be sorted
with respect to powers ofe and evaluated separately.

1. Ground state

First we investigate the solution in perturbation ordern
50. With Eqs.~2.15! and ~2.16! it follows that

tkl
0 50, ak

050. ~2.20!

Equation~2.12! leads to

Cvk5lk
0vk , ~2.21!

^xl~ t !xk~ t !&5lkd lk , ~2.22!
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with xk(t) representing amplitudes of PCA. As constructe
the ground state corresponds to the PCA solution.

2. First-order perturbation

In the first-order perturbation, we have to deal with no
quadratic coefficient tensors$ckm

n % and $dkm
n % with 1<k

<M , 1<m<N.
First we investigate the case 1<k<M and 1<m<M and

obtain from evaluating Eq.~2.6!:

dkm
1 52cmk

1 , dkk
1 5ckk

1 50. ~2.23!

Equations~2.11! and ~2.12! lead to Lagrangian parameters

ak
152

]Vd

]wk
U

0

•vk1
]Vd

]wk
1 U

0

•vk , tkk
1 52

]Vd

]wk
1U

0

•vk ,

~2.24!

tkm
1 5

lm
0

~lk
02lm

0 !
~Dmk2Dkm!2

]Vd

]wk
1 U

0

•vm ; kÞm,

~2.25!

and coefficients

ckm
1 5

1

~lk
02lm

0 !2 S 1

2
~lk

01lm
0 !Dkm2lk

0DmkD ;kÞm

~2.26!

with

Dkm5
]Vd

]wm
1 U

0

•vk2
]Vd

]wk
U

0

•vm . ~2.27!

The terms]Vd /]wm
1u

0
and ]Vd /]wmu

0
represent partial de

rivatives withwk
15wk5vk .

In the case of 1<k<M andM,m<N, we get

ckm
1 52

1

2lm
0 ~lk

02lm
0 !

S lm
0 ]Vd

]wk
U

0

•vm1lk
0 ]Vd

]wk
1U

0

•vmD ,

~2.28!

dkm
1 52

1

2~lk
02lm

0 !
S ]Vd

]wk
U

0

•vm1
]Vd

]wk
1U

0

•vmD , ~2.29!

and the Lagrangian parameters vanish.
In this paper we are dealing with low-dimensional dyna

ics; however, in the case of high-dimensional dynamics,
denominator (lk

02lm
0 ) may become small for high numbe

k,l and, therefore, perturbation theory in degenerated st
should be applied.
,

-

-
e

es

C. Specification ofVd

So far we have not specified the cost functionVd consid-
ering dynamic interactions. Our choice relies on the PC
approach for the time derivative of the signal,

(
i 51

M
^~ q̇2 ẋiwi !

2&

^q̇2&
. ~2.30!

Because of the assumed interactions, the time derivativ
the amplitudesẋi(t) can be described as a function ofxj ,

ẋi5 f i@xj #. ~2.31!

Inserting this expression into Eq.~2.30!, we obtain our defi-
nition of the cost functionVd :

Vd5(
i 51

M
^~ q̇2 f iwi !

2&

^q̇2&
. ~2.32!

The time derivative ofq(t) is calculated numerically and
remains regular in the case of weak noise. Strong noise
lead to irregular numerical values, which need to be inve
gated separately.

As an ansatz for the functionf i@xj # we choose a polyno-
mial function,

f i@xj #5(
j 51

M

G i j
1 xj1(

j 51

M

(
k51

j

G i jk
2 xjxk

1(
j 51

M

(
k51

j

(
l 51

k

G i jkl
3 xjxkxl , ~2.33!

since most of the generic cases can be modeled by such
of differential equations. To abbreviate the notation, we c
define a vector$ja% consisting of the powers ofxi ,

$ja%

5$x1 ,x2 , . . . ,xM ,x1
2 ,x1x2 , . . . ,xM

2 ,x1
3 ,x1

2x1 , . . . ,xM
3 %,

~2.34!

and summarize Eq.~2.33! to

f i@xj #5(
a

aiaja . ~2.35!

The derivatives]Vd /]wku0
and ]Vd /]wk

1u
0

occurring in

the expressions of coefficientsckm
1 can now be evaluated to

]Vd

]wk
U

0

5
2

^q̇2&
(
a

S (
b

akb
0 Mabvk2^ja

0 q̇& Daka
0 ,

~2.36!
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]Vd

]wk
1 U

0

5
2

^q̇2&
(
i 51

M

(
b

K S (
a

aia
0 ja

02q̇•vi Daib
0

]jb
0

]wk
1L .

~2.37!

Thereby, the polynomial coefficientsaka
0 are obtained from

Eq. ~2.9! as

aka
0 5(

b
bkbMba

21 ~2.38!

with

bkb5^~q•vk!jb
0&, Mab5^ja

0jb
0&, ~2.39!

and the derivatives ofjb
0 are given as

jb
05xr :

]jb
0

]wk
1

5qd rk ,

jb
05xrxs , r<s:

]jb
0

]wk
1

5q~dkrxs1dksxr !, ~2.40!

jb
05xrxsxt ,

r<s<t:
]jb

0

]wk
1

5q~dkrxsxt1dksxrxt1dktxrxs!.

D. Dynamically relevant subspace

Assuming aM-mode interaction, the modeswi
1 ,wi given

by Eqs.~2.15!, ~2.16!, and~2.19! are calculated in first-orde
correction out ofM PCA modes. In theN-dimensional signal
space, there are (M

N ) possible combinations to chooseM out
of N PCA modes as the ground state. Therefore, we ob
(M

N ) alternatives improving the corresponding PCA mod
Since the cost functionVd measures dynamics represen
tion, the best estimation of the relevant subspace is span
by modeswk

1 ,wk with minimal value ofVd(wk
1 ,wk ,e,M ),

i.e., by investigation of(M51
N (M

N ) branches, the best choic

FIG. 1. Trajectory near a stable fixpoint in thex-y plane.
in
.

-
ed

of spatial modes~in first-order perturbation theory! spanning
the dynamically relevant subspace and the number of in
acting modes is obtained.

III. APPLICATIONS TO SIMULATED DATA SETS

To illustrate our approach we will present in the followin
the analysis of three simulated data sets consisting of t
mode interactions with one- and three-dimensional noise
thogonal to the signal, and a chaotic three-mode interact
with additive noise nonorthogonal to the signal.

A. Noisy signal near a stable fixed point

First we assume a three-dimensional spatiotemporal
nal near a two-dimensional stable fixed point and addit
orthogonal noise,

q~ t !5x~ t !S 10

0

0
D 1y~ t !S 0

1

0
D 1nz~ t !S 0

0

1
D . ~3.1!

The amplitudesx(t) andy(t) thereby obey the following se
of differential equations:

ẋ52y,

ẏ5ax1by1cx2y, ~3.2!

where a50.06, b520.1, c50.01, x(t0)50.3, andy(t0)
50.7. The noise amplitudez(t) is modeled by

z~ t !5N(
i 51

h

r i~ t !Gi~m i ,s i
2 ,t !. ~3.3!

Here r iP@20.5;0.5# and hP@0;T# denote random num
bers, T denotes the number of time steps, andGi(m i ,s i

2 ,t)
represent temporal Gaussian functions with random me

FIG. 2. Calculated cost functionVd(M52,e) for the signal near
a stable fixpoint. The plot shows a minimum with a combination
the first two PCA modes~solid line! at emin50.084. The dotted line
corresponds to the combination of PCA modes 1 and 3; the da
line corresponds to the combination of PCA modes 2 and 3.
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FIG. 3. Projected trajectories
in the plane spanned by new
modesw1

1 ,w2
1 . The perturbation

parameter e is varied from e
50.000~a! over e50.052~b! and
e50.084 ~c! to e50.100 ~d!. We
recognize the best projection i
~c!, as predicted by Fig. 2.
th
d
s

be
m

CA

m

A

is

of

e

al
d

m i and random variancess i
2 . The factorN is introduced to

scalez(t) to ^z2(t)&51, n in Eq. ~3.1! allows tuning the
signal-to-noise ratio.

Figure 1 shows the signal inx–y plane: the trajectory
cycles into a stable fixed point.

We investigate the three-dimensional (N53) data
set consideringM52 interacting modes. Thus, we deal wi
(2

3) branches of ground states: PCA modes 1 and 2, mo
1 and 3, and modes 2 and 3. The corresponding value
the cost functionVd are plotted in dependence ofe in Fig. 2.
The branch of PCA modes 1 and 2 represents the
dynamic fit; they capture most of the dynamics. Fro
the figure we expect the best improvement of the P
modes for a perturbation value ofemin50.084. This effect
of the perturbation by the nonlinear cost functionVd is
es
of

st

illustrated in Fig. 3: the projectionsx(t)5w1
1
•q(t) and

y(t)5w2
1
•q(t) are presented in thex-y phase space for dif-

ferent values ofe. In agreement with our expectations fro
Fig. 2, the best fit compared to Fig. 1 is obtained fore
5emin , with a dramatic improvement compared to the PC
solution (e50).

The influence of the noisy part of the signal
investigated by varying the scalingn of the noise
amplitude. Figure 4 presents the results by plots
Vd(M52,e). Increasing signal-noise ratios/n, defined
by s/n5A^qsignal

2 &/^qnoise
2 &, decreases the quality of th

fit by increasing values ofVd and increasesemin , i.e.,
for higher noise levels the influence of our addition
cost functionVd becomes more important, which is reflecte
by increasing values ofemin . For high noise levels the
FIG. 4. Cost functionVd(e) for different val-
ues of the signal-to-noise ratios/n .
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FIG. 5. Amplitudes of the Lo-
renz attractor without noise~a!
and with nonorthogonal noise
where a channel with pure noise
added in an additional dimensio
~b!.
os
b

n
a

first-order perturbation may not be sufficient to capture m
of the dynamics, higher-order perturbation terms may
considered.

B. Noisy Lorenz attractor

The second example deals with a four-dimensional sig
q(t), consisting of a three-mode chaotic sign
@x(t),y(t),z(t)# and additive nonorthogonal noise,

q~ t !5x~ t !S 1

0

0

0

D 1y~ t !S 0

1

0

0

D 1z~ t !S 0

0

1

0

D 1G~ t !S 1

1

1

1

D .

~3.4!
t
e

al
l

The chaotic signal is modeled by the Lorenz equations,

ẋ52s~x2y!1a~ t !, ~3.5!

ẏ5rx2y2xz1a~ t !,

ż52bx1xy1a~ t !,

with s510, r 52.8, b58/3, x(t0)50.1, y(t0)50.2, and
z(t0)50.3.

The noise amplitudeG(t) is modeled by

G~ t !5N(
i 51

h

r i~ t !Gi~m i ,s i
2 ,t !, ~3.6!
z
ter

a-
FIG. 6. Dynamic cost function for the Loren
signal with respect to the perturbation parame
e with number of interacting modesM53. The
deepest minimum is observed ate50.2 with a
combination of PCA modes 1, 2, and 4~dotted
line!. The solid line corresponds to the combin
tion of PCA modes 1, 2, and 3.
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FIG. 7. Amplitudesq•wi
1 ob-

tained by the PCA fit~a! and our
perturbational approach~b!.
l
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cs
ir
ar
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with the same abbreviations as in the example above;a de-
notes correlated low noise. In Fig. 5~a! the amplitudes of the
‘‘pure’’ three-mode interaction without noise,x(t), y(t), and
z(t), are presented. Fig. 5~b! shows the four-dimensiona
spatiotemporal signalq(t), as given by Eq.~3.4!.

We investigate the simulated signal by assuming a th
mode interaction. Therefore, we deal with (3

4) PCA ground
states and corresponding branchesVd . Figure 6 shows two
branches~corrections based on PCA modes 1, 2, and 3,
well as based on modes 1, 2, and 4!, the other two omitted
branches are considerably higher. One observes that co
tions of the1–2–4 PCAground state lead to better dynami
representation as the 1-2-3 combination, i.e., in the th
PCA mode there is a higher contribution of the noisy p
than of the deterministic part, whereas in the fourth PC
mode the deterministic part overbalances the noisy contr
tion. This behavior is corrected by our approach, in suc
way that the separation of the deterministic—even thou
chaotic—part from the noisy part is improved.

Figure 7 presents the PCA amplitudes in comparison
the amplitudes obtained by our algorithm ate5emin .
e-

s

ec-

d
t

u-
a
h

o

A comparison of both results to the deterministic signay
is shown in Fig. 8. Here we transformed the original det
ministic signal partx5(x,y,z) t,G(t)50 by a transformation
matrix L to neglect any scaling effects due to different o
entations or scales of the compared signals.

L is determined by

]

]Lkl
^@y~ t !2Lx ~ t !#2&50 ~3.7!

˜Lkl5(
j

^ykxj&^xjxl&
21. ~3.8!

The improvement obtained by our algorithm compared to
PCA approach can be clearly observed in Fig. 8.

C. Estimation of the number of interacting modes

We simulate a five-dimensional signal q(t)
5„x(t),y(t),G1(t),G2(t),G3(t)…T based on the two-mode
interaction given by Eq.~3.2! and orthogonal noise given b
normalized amplitudes,
c-
FIG. 8. A direct comparison of
deterministic~dotted line! and re-
constructed signals~solid line!.
The best PCA fit is shown in~a!,
the best perturbation fit in~b!,
where a better match can be re
ognized. We cut off parts of the
time window to improve the com-
parison.
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FIG. 9. Dynamic cost func-
tions Vd(M ,e) calculated for the
noisy signal near a stable fixpoin
Only combinationsm-n of PCA
modes yielding the deepest min
mum of Vd are shown for various
numbers of interacting modes:M
52 in ~a!, M53 in ~b!, and M
54 in ~c!. In ~d!, a comparison of
the best fits of allM interacting
modes is presented. We recogniz
an obvious best fit atM52. The
cases whereM51 and M55
were not plotted with different
PCA ground states because
their visible irrelevance to the re
sult in ~d!.
he
om
f

st
A
e
r

ac

of
tion
al
one
A

ed
ur
per

r
es
ise.

the
G j~ t !5N(
i 51

n

Gi~m i ,s2,t !, ~3.9!

again with Gauss functionsGi(m i ,s2,t) with random means
m i and constant variancess2.

The applied dynamic fits are shown in Fig. 9 varying t
assumed number of interacting modes and the different c
binations of PCA modes as ground states. In the case oM
52 interacting modes@Fig. 9~a!# we recognize the deepe
minimum with a combination of the first and second PC
mode. Dynamic fits with three and four interacting mod
@Figs. 9~b! and 9~c!# show minima as well, but with highe
values ofVd . A comparison of the best fits@Fig. 9~d!# pre-
sents the differences with respect to the number of inter
ing modes: the two-mode interaction is clearly detected.
-

s

t-

Finally, we investigate the noisy Lorenz attractor~3.4!.
Dynamic fits are shown in Fig. 10 with varying number
interacting modes and PCA ground states. The investiga
of two coupling modes leads to the 1-2 branch with minim
values; for three interacting modes the method neglects
noisy mode by combinations of the 1-2-4 PCA modes.
comparison of the best fits withM52 andM53 shows an
interesting feature: though the Lorenz signal is determin
by a three-dimensional set of differential equations o
method detects a two-mode interaction: there is a dee
minimum for M52. This is due to the similarity of the two
amplitudesx(t) andy(t) @compare Fig. 5~a!# and the result-
ing correlation dimensiondC52.06 of the Lorenz attracto
@13#. The small differences between these two amplitud
cannot be resolved by our method in the presence of no
However, the detection of two interacting modes and
nd

FIG. 10. Dynamic cost functionsVd(M ,e) calculated for the noisy Lorenz attractor, at various PCA ground statesm-n. We recognize a

best fit with the first two PCA modes as ground state~solid line! at M52 ~a! and a best fit with a PCA ground state built by modes 1, 2, a
4 ~dotted line! at M53, seen in~b!. A comparison of the fits atM52 andM53 is presented in~c!; a deeper minimum is found atM
52 ~solid line!, but the difference to the minimum atM53 ~dotted line! is quite small. PCA ground states atM51 andM54 are found
at much higher values ofVd and are thus left out.
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good correspondence to the exact solution~compare Fig. 8!
is a considerable improvement compared to PCA
proaches.

IV. CONCLUSIONS

We introduced a concept in nonlinear signal analysis
analyzing spatiotemporal signals. It considers signal dyn
ics beside a maximum signal representation. The idea ma
consists of an additional signal dynamics fit to a pure sig
fit, interpreted as a perturbation of a PCA ground state.
troducing a biorthogonal basis, first-order perturbation le
to expansion coefficients of modes and polynoms of diff
ential equations.

This approach improves PCA, since signal-noise sep
,

on

g

-

r
-

ly
l
-
s
-

a-

tion is achieved even in the case of nonorthogonal signal
noise, and in the case of noise levels with larger contri
tions than signal contributions to the data. Finally, the nu
ber of interacting modes can be estimated by the prese
algorithm.

The method is illustrated by examples of its application
simulated data sets: In the case of a noisy trajectory ne
stable fixed point the dimensionality of the dynamics su
space is correctly estimated and a dramatic improvem
compared to PCA is achieved. For a noisy three-dimensio
chaotic signal embedded in a four-dimensional phase sp
the dimensionality is underestimated due to the fractal ge
etry of the attractor. However, the dominant structure of
attractor is reconstructed and noisy parts are separated.

The algorithm may represent a helpful tool for analyzi
spatiotemporal signals in different fields of research.
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